Supporting Information

SERS-based dual-mode DNA aptasensors for rapid classification of SARS-CoV-2 and influenza A/H1N1 infection

Hao Chena, Sung-Kyu Parkb, Younju Jounga, Taejoon Kangc,*, Mi-Kyung Leed,*, and Jaebum Chooa,*

a Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
b Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon 51508, South Korea
c Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
d Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul 06973, South Korea
Au Nanopopcorn → Functionalization → Au Nanopopcorn

4-MBA & MCH → Blocking

Capture sequence I

Sensible reporter I (Cy3)

Internal standard reporter (4-MBA)

SARS-CoV-2 Aptamer for Spike protein

Capture sequence II

Sensible reporter II (RRX)

Influenza A H1N1 Aptamer for Hemagglutinin
Fig. S2. Evaluation of the substrate-to-substrate reproducibility using the internal standard 4-MBA. (a) Photographs of six gold nanopopcorn aptasensors for the duplex assays. (b) Average Raman spectra obtained from all 36-point pixels in six pieces of aptasensors. (c) Corresponding histograms for the normalized Raman peak intensity ratios (I_{1470}/I_{1075}, blue and I_{1650}/I_{1075}, red) for six substrates. The relative standard deviations (RSDs) for the six aptasensors (1-6) is 2.1% (I_{1470}/I_{1075}) and 1.7% (I_{1650}/I_{1075}), respectively.
Fig. S4. Average Raman spectra of blank, SARS-CoV-2 (200 PFU/mL), influenza A/H3N2 (1000 HAU/mL), influenza A/H1N1 (80 HAU/mL), and influenza B (500 HAU/mL) for the specificity test of the dual-mode SERS-based aptasensor.