Au@ZIF-8 SERS Paper for Food Spoilage Detection

Authors and Affiliations

Hongki Kima, Ba Thong Trinhb, Kyung Ho Kimc, Jeong Moona,d, Hyunju Kanga, Kwanghyeon Job, Rashida Akterb, Jinyoung Jeonge,f, Eun-Kyung Lima,f, Juyeon Junga, Ho-Suk Choig, Hyun Gyu Parkd, Oh Seok Kwonc,h, Ilsun Yoonb,*, Taejoon Kanga,*

aBionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIIBB), Daejeon, 34141, South Korea

bDepartment of Chemistry, Chungnam National University, Daejeon, 34134, South Korea

cInfectious Disease Research Center, KRIIBB, Daejeon, 34141, South Korea

dDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea

eEnvironmental Disease Research Center, KRIIBB, Daejeon, 34141, South Korea

fDepartment of Nanobiotechnology, KRIIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea

gDepartment of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea

hDepartment of Biosystems and Bioengineering, KRIIBB School of Biotechnology, UST, Daejeon, 34113, South Korea

*Corresponding author.

Abstract

Putrescine and cadaverine are important volatile indicators for the evaluation of food spoilage. In this study, a metal-organic framework (MOF)-coated surface-enhanced Raman scattering (SERS) paper platform for the detection of putrescine and cadaverine is developed. Au@zeolite imidazolate framework-8 (ZIF-8) SERS paper is fabricated by the coating of ZIF-8 layer on a Au nanoparticle-impregnated paper that is prepared by dry plasma reduction. The Au@ZIF-8 SERS paper is characterized by scanning electron microscope, energy-dispersive X-ray spectroscopy, X-ray diffraction, and N\textsubscript{2} sorption isotherm. The ZIF-8 layer enables the accumulation of gaseous molecules and also provides enhancement of SERS signals. The fluorescence, SERS, and simulation results prove the improved detection ability of the Au@ZIF-8 platform for the volatile molecules. For the selective detection of putrescine and cadaverine, the Au@ZIF-8 SERS paper is functionalized with 4-mercatobenzaldehyde (4-MBA). The 4-MBA molecule acts as a Raman reporter and also a specific receptor for the volatile amine molecules. Using the intensity ratiometric detection of 4-MBA-functionalized Au@ZIF-8 SERS paper, putrescine and cadaverine are quantitatively detected with detection limits of 76.99 and 115.88 parts per billion, respectively. Furthermore, the detection of volatile amine molecules released from spoiled salmon, chicken, beef, and pork samples is demonstrated. It is anticipated that the MOF-coated SERS paper platforms will be applicable not only in food safety but other applications including disease diagnosis and environmental monitoring.
논문 정보
- 형식: Research article
- 게재일: 2021년 05월 (BRIC 등록일 2021.08.16)
- 연구진: 국내연구진
- 분야: Nanobio, Food_Technology

Citing URL: https://www.ibric.org/myboard/read.php?Board=hbs_treatise&id=71167&idauthorid=8567

Copyright@BRIC. All rights reserved.