

강태준(Taejoon Kang) 한국생명공학연구원

ACS Nano, Publication Date:November 20, 2020 | https://doi.org/10.1021/acsnano.0c07264

Clustered Regularly Interspaced Short Palindromic Repeats-Mediated Surface-Enhanced Raman Scattering Assay for Multidrug-Resistant Bacteria

Authors and Affiliations

Hongki Kim^{1,†}, SoohyunLee^{2,†}, Hwi Won Seo², Byunghoon Kang¹, Jeong Moon^{1,3}, Kyoung G. Lee⁴, Dongeun Yong⁵, Hyunju Kang¹, Juyeon Jung^{1,6}, Eun-Kyung Lim^{1,6}, Jinyoung Jeong^{6,7}, Hyun Gyu Park³, Choong-Min Ryu^{2,8,*}, and Taejoon Kang^{1,*}

¹Bionanotechnology Research Center, ²Infectious Disease Research Center, and ⁷Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea ³Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea ⁴Nanobio Application Team, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea ⁵Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea ⁶Department of Nanobiotechnology and ⁸Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea

[†]H.K. and S.L. contributed equally.

*Corresponding Authors

Abstract

Antimicrobial resistance and multidrug resistance are slower-moving pandemics than the fast-spreading coronavirus disease 2019; however, they have potential to cause a much greater threat to global health. Here, we report a clustered regularly interspaced short palindromic repeats (CRISPR)-mediated surfaceenhanced Raman scattering (SERS) assay for multidrug-resistant (MDR) bacteria. This assay was developed via a synergistic combination of the specific gene-recognition ability of the CRISPR system, superb sensitivity of SERS, and simple separation property of magnetic nanoparticles. This assay detects three multidrug-resistant (MDR) bacteria, species Staphylococcus aureus, Acinetobacter baumannii, and Klebsiella pneumoniae, without purification or gene amplification steps. Furthermore, MDR A. baumannii-infected mice were successfully diagnosed using the assay. Finally, we demonstrate the on-site capture and detection of MDR bacteria through a combination of the three-dimensional nanopillar array swab and CRISPR-mediated SERS assay. This method may prove effective for the accurate diagnosis of MDR bacterial pathogens, thus preventing severe infection by ensuring appropriate antibiotic treatment.

KEYWORDS:CRISPR/dCas9, surface-enhanced Raman scattering, antimicrobial-resistance, bacteria, nanoparticle

- 형식: Research article
- 게재일: 2020년 11월 (BRIC 등록일 2020.12.09)
- 연구진: 국내연구진 💽
- 분야: Genetics

Citing URL: https://www.ibric.org/my/board/read.php?Board=hbs_treatise&id=66858&ttype=0&idauthorid=8567

Copyright@BRIC. All rights reserved.