Supporting Information

for *Macromol. Biosci.*, DOI: 10.1002/mabi.201800486

Surface-Independent and Oriented Immobilization of Antibody via One-Step Polydopamine/Protein G Coating: Application to Influenza Virus Immunoassay

Jeong Moon, Jihyun Byun, Hongki Kim, Jinyoung Jeong, Eun-Kyung Lim, Juyeon Jung, Soojeong Cho, Woo Kyung Cho, and Taejoon Kang*
Supporting Information

Surface-Independent and Oriented Immobilization of Antibody via One-step Polydopamine/Protein G Coating: Application to Influenza Virus Immunoassay

Figure S1. AFM 3D images of the (A) bare glass, (B) PDA-coated, and (C) PDA/protein G-coated surfaces.
Figure S2. Thickness of PDA/protein G-coated surface depending on the protein G concentration. The data represent the mean plus standard deviation from five measurements.
Figure S3. Fluorescence images of bare glass (A), and PDA-coated glass (B) after protein G and dye-conjugated antibody immobilization.
Figure S4. Plot of the pH1N1 concentration-dependent absorbance value at 450 nm. The data represent the mean plus standard deviation from three measurements.
Figure S5. Plot of absorbance values depending on the type of influenza virus (pH1N1, H3N2, H5N2, and Influenza B virus). The concentration of each virus was 10^5 pfu/mL. The data represent the mean plus standard deviation from three measurements.