An Antibody-Immobilized Silica Inverse Opal Nanostructure for Label-Free Optical Biosensors

Wang Sik Lee 1,2, Taejoon Kang 1,2,3, Shin-Hyun Kim 4 and Jinyoung Jeong 1,2,3,*

1 Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KIRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; wang3026@kribb.re.kr (W.S.L.); kangtaejoon@kribb.re.kr (T.K.)
2 Department of Nanobiotechnology, KIRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
3 BioNano Health-Guard Research Center, Global Frontier Project, 125 Gwahak-ro, Yuseong, Daejeon 34141, Korea
4 Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; kim.sh@kaist.ac.kr
* Correspondence: jyjeong@kribb.re.kr; Tel.: +82-42-879-8454; Fax: +82-42-879-8596

Characterization of Immobilized Antibody on IO Structures

To confirm the immobilization of antibody, we performed the HRP activity test by goat anti-rabbit IgG H&L. Also, we compared SiO₂ thin film to IO nanostructure. The HRP tagged antibody was immobilized for 3 h at 4°C on Cys-porG immobilized IO nanostructure. To reduce the non-specific binding, the surface was treated by 1% BSA for 60 min. Antibody immobilized IO nanostructure was immersed in the mixture solution of 800 µM of TMB and 50 mM H₂O₂ in 2 mL PBS. After 5 min, 0.1 mL of 2 M of H₂SO₄ solution was added in the mixture solution to stop the reaction. Then, the absorbance at 450 nm was measured by using UV/Visible spectrometer (DU-800, Beckman Co., Brea, CA, USA).

Figure S1. Reflectance peak position of IO nanostructure by glycerin concentration. Refractive index of glycerin is 1.33, 1.36, 1.38, and 1.41 by concentration 0%, 20%, 40% and 60%.
Figure S2. (a) HRP activity of IO nanostructure compared APTMS modified IO with proteinG modified IO. (b) Comparison of one-dimensional thin film and three-dimensional IO nanostructure.